Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing Min Shi,* Feng Xia Zhang, Jian Jun Lu and Lian Dong Liu

Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail:
shijingmin@beelink.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.063$
$w R$ factor $=0.149$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(4-aminopyridinium) tetrathiocyanatocobaltate(II)

The title structure, $\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Co}(\mathrm{NCS})_{4}\right]$, comprises discrete monovalent 4 -aminopyridinium cations and divalent tetrathiocyanatocobaltate(II) anions. The cations and anions are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds $[\mathrm{N} \cdots \mathrm{S}=3.264$ (4)3.640 (6) Å] to form a three-dimensional framework.

Comment

The Co atom of the anion in the title salt, (I), is coordinated by four N atoms from four thiocyanate groups in a slightly distorted tetrahedral geometry (see Table 1). In the crystal structure, there are hydrogen bonds between NH groups and S atoms, in which the NH donor groups are from both amino groups and pyridine ring N atoms (see Table 2) and the resulting $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds form a three-dimensional framework (see Fig. 2). In addition, there are significant $\pi-\pi$ stacking interactions between neighbouring pyridine rings; the relevant distances are $C g 1 \cdots C g 1^{i}=3.548(3) \AA$ and $C g 1 \cdots 1^{\mathrm{i}}{ }_{\text {perp }}=3.306 \AA$, and $C g 2 \cdots C g 2^{\mathrm{ii}}=3.925$ (4) \AA and $C g 2 \cdots 2^{\mathrm{ii}}{ }_{\text {perp }}=3.368 \AA$ [symmetry codes: (i) $1-x, 1-y,-z$; (ii) $-x, 1-y,-z ; C g 1$ and $C g 2$ are the centroids of the $\mathrm{N} 6 /$ C5-C9 and N7/C10-C14 rings, respectively; $C g I \cdots J_{\text {perp }}$ is the perpendicular distance from $C g I$ to ring J].

(I)

Experimental

4-Aminopyridine $(0.0574 \mathrm{~g}, 0.610 \mathrm{mmol})$ was added to an aqueous solution (15 ml) containing $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.1102 \mathrm{~g}, 0.301 \mathrm{mmol})$ and sodium thiocyanate ($0.0511 \mathrm{~g}, 0.630 \mathrm{mmol}$), and the solution was stirred for a few minutes. Blue single crystals were obtained after the solution was allowed to stand at room temperature for four weeks.

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Co}(\mathrm{NCS})_{4}\right]$	$D_{x}=1.501 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=481.50$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{\perp} / c$	Cell parameters from 2201
$a=14.118(2) \AA$	reflections
$b=9.1179(14) \AA$	$\theta=2.6-22.4^{\circ} \AA$
$c=16.756(3) \AA$	$\mu=1.21 \mathrm{~mm}^{-1}$
$\beta=98.839(2)^{\circ}$	$T=298(2) \mathrm{K}$
$V=2131.4(6) \AA^{3}$	Prism, blue
$Z=4$	$0.25 \times 0.09 \times 0.08 \mathrm{~mm}$

Received 3 May 2005 Accepted 17 May 2005 Online 21 May 2005

Data collection
Bruker SMART CCD diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.751, T_{\text {max }}=0.909$
11075 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.149$
$S=1.05$
3936 reflections
244 parameters
H -atom parameters constrained

3936 independent reflections 2795 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-17 \rightarrow 17$
$k=-11 \rightarrow 10$
$l=-20 \rightarrow 16$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0635 P)^{2}\right. \\
& +1.614 P \text {] } \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.71 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Co1-N1	$1.939(4)$	$\mathrm{Co} 1-\mathrm{N} 3$	$1.951(4)$
$\mathrm{Co} 1-\mathrm{N} 4$	$1.944(4)$	$\mathrm{Co} 1-\mathrm{N} 2$	$1.956(4)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 4$	$109.84(16)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$107.78(17)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 3$	$115.66(18)$	$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{N} 2$	$114.37(16)$
$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{N} 3$	$101.76(17)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 2$	$107.56(16)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 6-\mathrm{H} 7 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.86	2.54	$3.264(4)$	142
$\mathrm{~N} 5-\mathrm{H} 4 B \cdots \mathrm{~S} 4^{\mathrm{ii}}$	0.86	2.75	$3.540(5)$	154
$\mathrm{~N} 7-\mathrm{H} 13 A \cdots \mathrm{~S} 2^{\text {iii }}$	0.86	2.53	$3.359(7)$	163
$\mathrm{~N} 8-\mathrm{H} 9 A \cdots \mathrm{~S} 3^{\mathrm{iv}}$	0.86	2.71	$3.567(6)$	176
$\mathrm{~N} 8-\mathrm{H} 10 B \cdots \mathrm{~S}^{\mathrm{v}}$	0.86	2.79	$3.640(6)$	170
Symmetry codes:	(i)	$x, 1+y, z ;$	(ii)	$1-x, 1-y,-z ;$
$1-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (v) $x-1, \frac{1}{2}-y, z-\frac{1}{2}$.		$x-1, y, z ;$	(iv)	

All H atoms were placed in calculated positions and included in the final cycles of refinement using a riding-model approximation $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=1.2_{\mathrm{eq}}(\mathrm{C}) ; \mathrm{N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2_{\mathrm{eq}}(\mathrm{N})$].

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of China (No. 20271043) and The Natural Science Foundation of Shandong Province of China (No. Y2002B10) for support.

Figure 1
View of the title compound, showing the atom-numbering scheme. Ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2
Packing diagram (Spek, 2003), showing $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds as dashed lines. Colour codes: green Co, yellow S, blue N and black C .

References

Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.A06). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

